FAST TCP:

From Theory to Experiments

Cheng Jin, David Wei, Steven H. Low, Julian Bunn, Hyojeong D. Choe, John C. Doyle,
Harvey Newman, Sylvain Ravot, and Suresh Singh, Caltech
Fernando Paganini, UCLA
Gary Buhrmaster and Les Cottrell, Stanford Linear Accelerator Center
Olivier Martin, CERN, Geneva
Wu-chun Feng, Los Alamos National Laboratory

Abstract

We describe a variant of TCP, called FAST, that can sustain high throughput and
utilization at multigigabits per second over large distances. We present the motiva-
tion, review the background theory, summarize key features of FAST TCP, and

report our first experimental results.

he congestion control algorithm in the current TCP has

performed remarkably well and is generally believed to

have prevented severe congestion as the Internet scaled

up by six orders of magnitude in size, speed, load, and
connectivity in the last 15 years. It is also well known, howev-
er, that as bandwidth-delay product continues to grow, the
current TCP implementation will eventually become a perfor-
mance bottleneck.

In this article we describe a different congestion control
algorithm for TCP, called FAST [1]. FAST TCP has three key
differences. First, it is an equation-based algorithm and hence
eliminates packet-level oscillations. Second, it uses queuing
delay as the primary measure of congestion, which can be
more reliably measured by end hosts than loss probability in
fast long-distance networks. Third, it has stable flow dynamics
and achieves weighted proportional fairness in equilibrium
that does not penalize long flows, as the current congestion
control algorithm does. Alternative approaches are described
in [2-6]. The details of the architecture, algorithms, extensive
experimental evaluations of FAST TCP, and comparison with
other TCP variants can be found in [1, 7].

In this article we highlight the motivation, background the-
ory, implementation, and our first major experimental results.
The scientific community is singular in its urgent need for effi-
cient high-speed data transfer. We explain why this communi-
ty has been driving the development and deployment of
ultrascale networking. The design of FAST TCP builds on an
emerging theory that allows us to understand the equilibrium
and stability properties of large networks under end-to-end
control. It provides a framework to understand issues, clarify
ideas, and suggest directions, leading to a more robust and
better performing design. We summarize this theory and
explain FAST TCP. We report the results of our first global
experiment and conclude the article.

Motivation

One of the key drivers of ultrascale networking is the high
energy and nuclear physics (HENP) community, whose explo-
rations at the high energy frontier are breaking new ground in
our understanding of the fundamental interactions, structures,

and symmetries that govern the nature of matter and space-
time in our universe. The largest HENP projects each encom-
passes 2000 physicists from 150 universities and laboratories
in more than 30 countries. Collaborations on this global scale
would not have been attempted if the physicists could not
count on excellent network performance. Rapid and reliable
data transport, at speeds of 1-10 Gb/s and 100 Gb/s in the
future, is a key enabler of global collaborations in physics and
other fields. The ability to analyze and share many terabyte-
scale data collections, accessed and transported in minutes on
the fly, rather than over hours or days as is the current prac-
tice, is at the heart of the process of search and discovery for
new scientific knowledge.

For instance, the Compact Muon Solenoid (CMS) Collabo-
ration, now building next-generation experiments scheduled to
begin operation at the European Organization for Nuclear
Research’s (CERN’s) Large Hadron Collider (LHC) in 2007,
along with the other LHC Collaborations, is facing unprece-
dented challenges in managing, processing, and analyzing
massive data volumes, rising from the petabyte (101° bytes) to
the exabyte (1018 bytes) scale over the coming decade. The
current generation of experiments now in operation and tak-
ing data at Stanford Linear Accelerator Center (SLAC) and
Fermilab face similar challenges. SLAC’s experiment has
already accumulated more than 1 Pbyte of stored data. Effec-
tive data sharing will require 10 Gb/s of sustained throughput
on the major HENP network links within the next two to
three years, rising to terabits per second within the coming
decade.

Continued advances in computing, communication, and
storage technologies, combined with the development of
national and global grid systems, hold the promise of provid-
ing the required capacities and an effective environment for
computing and science. The key challenge we face, and intend
to overcome with FAST TCP, is that the current congestion
control algorithm of TCP does not scale to this regime.

The currently deployed TCP implementation is an
enhanced version of Reno. It is a loss-based approach. It
uses additive increase multiplicative decrease (AIMD)
where the source transmission rate is increased by one unit
(packet per round-trip time, RTT) in each RTT, and halved

4 0890-8044/05/$20.00 © 2005 IEEE

IEEE Network ¢ January/February 2005

on each loss event. While it works well at low speed, Al is
too slow and MD too drastic, leading to low utilization as a
network scales up in capacity. Moreover, it perpetually
pushes the queue to overflow. It also discriminates against
flows with large RTTs. To address these problems, TCP
Vegas adopts a delay-based approach where a source implic-
itly estimates its end-to-end queuing delay. Instead of oscil-
lating and pushing the queue to overflow, TCP Vegas
stabilizes its rate at a value that buffers a target number of
its own packets in its path in order to keep the path fully
utilized. It adjusts its rate by one unit per RTT up or down
depending on whether the number of its own packets
buffered in the path falls short of or exceeds the target.
FAST TCP is a high-speed version of TCP Vegas, with a
fairness property independent of the delay of the flows. We
explain their relationship in more detail later after explain-
ing the background theory.

Background Theory

There is now a preliminary theory to understand large-scale
networks such as the Internet under end-to-end control. The
theory clarifies how control algorithms and network parame-
ters determine the equilibrium and stability properties of the
network, and how these properties affect its performance,
fairness, and responsiveness. It is useful in both understanding
problems of the current congestion control algorithm as net-
works scale up in capacity and designing better algorithms to
solve these problems.

Congestion control consists of two components, a source
algorithm, implemented in TCP, that adapts sending rate (or
window) to congestion information in the source’s path, and a
link algorithm, implemented in routers, that updates and
feeds back local congestion information to sources that tra-
verse the link. Typically, the link algorithm is implicit, and the
measure of congestion is either loss probability or queuing
delay. For example, the current protocol TCP Reno and its
variants use loss probability as a congestion measure, and
TCP Vegas primarily uses queuing delay as a congestion mea-
sure. Both are implicitly updated by the queuing process and
implicitly fed back to sources via end-to-end loss and delay,
respectively.

The source-link algorithm pair, referred to here as
TCP/active queue management (AQM) algorithms, forms a
distributed feedback system, the largest manmade feedback
system in deployment. In this system, hundreds of millions of
TCP sources and hundreds of thousands of network devices
interact with each other, each executing a simple local algo-
rithm, implicitly or explicitly, based on local information.
Their interactions result in a collective behavior whose equi-
librium and stability properties we now discuss.

Equilibrium and Performance

We can interpret TCP/AQM as a distributed algorithm over
the Internet to solve a global optimization problem [8]; see
also [9, 10] for recent surveys. The solution of the optimiza-
tion problem and that of an associated problem (to be dis-
cussed below) determine the equilibrium and performance of
the network. Different TCP and AQM algorithms all solve the
same prototypical problem. They differ in the objective func-
tion of the underlying optimization problem and the iterative
procedure to solve it.

Even though historically TCP and AQM algorithms have
not been designed as an optimization procedure, this interpre-
tation is valid under fairly general conditions and useful in
understanding network performance, such as throughput, uti-
lization, delay, loss, and fairness. Moreover, the underlying
optimization problem has a simple structure that allows us to

efficiently compute these equilibrium properties numerically,
even for a large network that is hard to simulate.

Specifically, we can regard each source as having a utility
function that measures its “happiness” as a function of its
data rate. Consider the problem of maximizing the sum of all
source utility functions over their rates, subject to link capaci-
ty constraints. This is a standard constrained optimization
problem for which many iterative solutions exist. The chal-
lenge in our context is to solve for the optimal source rates in
a distributed manner using only local information. A key fea-
ture we exploit is the duality theory. It says that associated
with our (primal) utility maximization problem is a dual mini-
mization problem. Whereas the primal variables over which
utility is to be maximized are source rates, the dual variables
for the dual problem are congestion measures at the links.
Moreover, solving the dual problem is equivalent to solving
the primal problem. There is a class of optimization algo-
rithms that iteratively solve for both the primal and dual prob-
lems at once.

TCP/AQM can be interpreted as such a primal-dual algo-
rithm that is distributed and decentralized, and solves both
the primal and dual problems. TCP iterates on the source
rates (a source increases or decreases its window in response
to congestion in its path), and AQM iterates on the conges-
tion measures (e.g., loss probability at a link increases or
decreases as sources traversing that link increase or decrease
their rates). They cooperate to determine iteratively the net-
work operating point that maximizes aggregate utility. When
this iterative process converges, the equilibrium source rates
are optimal solutions of the primal problem and the equilibri-
um congestion measures are optimal solutions of the dual
problem. The throughput and fairness of the network are thus
determined by the TCP algorithm and the associated utility
function, whereas utilization, loss, and delay are determined
by the AQM algorithm.

Stability

If we think of an equilibrium state as the desired operating
point that produces good network performance, we want to
make sure the equilibrium points are stable. This means that
when the equilibrium point shifts because of changes in net-
work topology or flow pattern, the network will converge to
the new equilibrium point. It seems undesirable to operate a
large network in an unstable regime, and unnecessary if we
know how to operate it in a stable regime without sacrificing
performance.

It has been shown that TCP Reno can become unstable as
delay increases or, more strikingly, as network capacity
increases! Moreover, the high control gain introduced by TCP
is mainly responsible for the instability. The high control gain
is a consequence of halving the window size on each loss
event. The gain increases rapidly with delay or capacity, mak-
ing it very difficult for any AQM algorithm to stabilize the
current TCP. This underlies the difficulty of tuning parame-
ters in the random early detection (RED) AQM scheme: they
can be tuned to improve stability, but only at the cost of a
large queue. Most recommendations in the literature aim to
avoid a large queue, often leading to violent oscillations and
reduced utilization.

Two types of TCP/AQM algorithms are proposed in [11,
12] that can be proved to maintain stability around the equi-
librium point at high capacity and large delay in general net-
works. While both of these algorithms are decentralized, they
are complementary in many ways. The algorithms in [11],
called primal algorithms, allow general utility functions and
hence arbitrary fairness in rate allocation, but give up tight
control on utilization. The algorithms in [12], called dual algo-

IEEE Network ¢ January/February 2005

rithms, on the other hand, can achieve very high utilization,
but are restricted to a specific class of utility functions and
hence fairness in rate allocation. The main insight from this
series of work is that to maintain stability, sources should
scale down their responses by their individual round-trip
delays (i.e., adjust their rates up or down less aggressively if
their round-trip delays are large, and vice versa), and links
should scale down their responses by their individual capaci-
ties (i.e., update their congestion measures less aggressively if
their capacities are large, and vice versa).

In the original primal algorithms, only the source adapta-
tion is dynamic and the link adaptation has no dynamics,
while in the original dual algorithms, the reverse is true. By
adding slow timescale dynamics to the link algorithm, the pri-
mal algorithms can be made to achieve both arbitrary fairness
and high utilization [13]. The primal approach motivates a
TCP implementation tailored for high bandwidth-delay prod-
uct regime [4].

By adding slow timescale dynamics to the source algorithm,
the dual algorithms can also be made to achieve both arbi-
trary fairness and high utilization [12]. The original link algo-
rithm in [12] assumes explicit feedback so that network
queues can be emptied. Its implementation would require
modifying routers in the current Internet. However, this link
algorithm has the same dynamics mathematically as the
dynamics of queuing delay. This observation leads to an algo-
rithm that can maintain linear stability without having to
change the current routers [14]. These theoretical results sug-
gest that it is possible to stabilize the Internet, as it continues
to scale up in capacity and size, with the current FIFO (first-
in-first-out) routers by modifying just the TCP kernel at the
sending hosts.

FAST TCP

The congestion control mechanism of FAST TCP has four
components. They are functionally independent so that they
can be designed separately and upgraded asynchronously. The
data control component determines which packets to transmit,
window control determines how many packets to transmit, and
burstiness control determines when to transmit these packets.
These decisions are made based on information provided by
the estimation component. Window control regulates packet
transmission at the round-trip timescale, while burstiness con-
trol works at a smaller timescale. In the following, we provide
an overview of these components.

Estimation

This component computes two pieces of feedback information
for each data packet sent — a multibit queuing delay and a
one-bit loss-or-no-loss indication — which are used by the
other three components. When a positive acknowledgment is
received, FAST calculates the RTT for the corresponding
data packet and then uses it to compute the minimum RTT
and an exponentially smoothed average RTT. The average
and minimum RTTs are used in the window control compo-
nent. When a negative acknowledgment (signaled by three
duplicate acknowledgments or timeout) is received, it gener-
ates a loss indication for this data packet to the data control
component.

Window Control

Like TCP Vegas, FAST TCP uses queuing delay as its main
measure of congestion in its window adjustment algorithm. In
a loss-based approach, sources must periodically push buffers
to overflow, in the absence of AQM, in order to generate the
target loss probability, thus inducing jittery behavior. Delay

information allows the sources to settle into a steady state
when the network is static. Queuing delay also has two advan-
tages as a congestion measure. It provides a finer-grained
measure of congestion: each measurement of packet loss
(whether a packet is lost or not) provides one bit of conges-
tion information, whereas each measurement of queuing delay
provides multibit information, limited by clock accuracy and
measurement noise. Moreover, the dynamics of delay has the
right scaling with respect to link capacity to help maintain sta-
bility as networks scale up in capacity [12, 14].

Under normal network conditions, FAST periodically
updates the congestion window w based on the average RTT
according to:

w<—min{2w (l—y)w+y(ww+a)} 1)
’ RTT

where v is a constant between 0 and 1, RTT is the current
average RTT, baseRTT is the minimum RTT observed so far,
and o is a protocol parameter that controls fairness and the
number of packets each flow buffered in the network (see
below).

Even though windows are adjusted in different ways at the
packet level in TCP Vegas and FAST, their flow dynamics are
similar mathematically. Indeed, the mathematical model of
Eq. 1 is (ignoring the 2w term)

wilt + 1) = wit) + ¥(0; - xi(1)gi(1))
where w;(¢) is the window size of flow i in the current update
period £, x;(¢) is its current throughput, and ¢;(¢) is its current
queuing delay. TCP Vegas has a flow dynamic

1 .
) sign(oy; — x;(1)g; (1))

where Tj(¢) is the current RTT of flow i, and sign(z)= -1 if z
<0,0ifz =0, and 1 if z > 0. Hence, while TCP Vegas
adjusts its window up or down by one packet per RTT depend-
ing on whether the number x;(¢)q;(¢) of buffered packets is
smaller or greater than its target oy, the size of window adjust-
ment in FAST TCP depends on the magnitude as well as the
sign of o; — x;(¢)g;(t). In other words, FAST adjusts its window
by a large amount, up or down, when the number of buffered
packets is far away from its target, and a small amount when
it is close. In this sense, FAST is a high-speed version of
Vegas.

The equilibrium and fairness properties of FAST TCP in
general networks with multiple links and heterogeneous flows
are simple to understand. Indeed, the equilibrium through-
puts of FAST flows are the unique optimal vector x* that
maximizes X;a;logx; subject to the link constraint that the
aggregate flow rate at any link does not exceed the link
capacity. Here the sum is taken over all flows i. Hence, FAST
maximizes log utility function. This implies in particular that
FAST achieves proportional fairness, which is milder than
maxmin fairness in that it does not give absolute priority to
small flows.

In addition to determining the fairness properties, the
parameter o; is also equal to the number of flow i’s packets
that are buffered in the routers in its path in steady state. If
there are N flows, the total number of packets buffered in the
routers in steady state is Zi[iloci. The distribution of these
packets in the network, assuming all have enough buffering
capacity, is completely determined by the utility maximization
problem: while the source rates solve the primal problem, the
vector of queuing delays at each link due to these packets is
the optimal solution of the associated dual problem (Lagrange

IEEE Network ¢ January/February 2005

P
SC 2002, Baltimore
Caltech SLAC
8*1GE 8*1GE
Cisco 6500 Cisco 6500
T T
10 GE 10 GE
SCinet
o J
|
0C192
) TeraGrid
Abilene 0C192

(Starlight - Chicago

(CERN - Geneva 10 GE - (Level3PoP - Sunnyvale\
L Juniper T640 Level3:0C192
@ TeraGrid GSR 12406
- |
8*1GE iCaltech(DoE)/
{CERN PoP
Cisco 6500 —— DataTag:0C48 —— Cisco 6500 @
S 4 20*1GE > g

-

J

M Figure 1. Network setup in SC 2002, Baltimore, Maryland, November 16-22, 2002. Distance between Sunnyvale and Geneva is 10,037

kmy, that between Sunnyvale and Baltimore is 3948 km.

multipliers). Hence, it is easy to calculate all the equilibrium
flow throughputs and link delays for a general network of
FAST flows if the network is static.

In reality, networks are never static. Flows join and
depart asynchronously. The solution of the utility maximiza-
tion problem describes the behavior to which the network as
a whole converges when flow pattern or topology shifts the
equilibrium to a new point, provided the new equilibrium
point is stable. Global stability of FAST TCP in the pres-
ence of feedback delay is still an open problem, but several
partial results have been proved in [1, 15, 16]. First, FAST
TCP is proved to be always locally stable in general net-
works in the absence of feedback delay [1, 15]. When feed-
back delay is present, it is locally stable if the heterogeneity
of flow delays is small [16]. Second, FAST TCP is proved to
be globally stable at a single link in the absence of delay
[16]. Moreover, it converges exponentially fast to the equi-
librium point.

Data Control

Data control selects the next packet to send from three pools
of candidates: new packets, packets that are deemed lost (neg-
atively acknowledged), and transmitted packets that are not
yet acknowledged. When there is no loss, new packets are
sent in sequence as old packets are acknowledged. This is
referred to as self-clocking or ack-clocking. During loss recov-
ery, a decision must be made on whether to retransmit lost
packets, keep transmitting new packets, or retransmit older
packets that are neither acknowledged nor marked as lost.

The data control component makes the decision on how to
mix packets from the three candidate pools.

This decision becomes important especially when band-
width-delay product is large. For example, at a window size of
15,000 packets, a single loss event can lose 7000 packets or
more (e.g., in slow start). They must be retransmitted rapidly,
but in a way that does not exacerbate congestion and lead to
more losses or even timeouts. Moreover, packets that are lost
may not be detected all at once, which further complicates the
decision of what to transmit.

Burstiness Control

The burstiness control component smoothes out transmission
of packets in a fluid-like manner to track the available band-
width. It is particularly important in networks with large band-
width-delay products, where traffic can be extremely bursty
due to events both in the network and at the end hosts. For
instance, a single acknowledgment can acknowledge several
thousand packets, opening up the window in a large burst.
Sometimes the sender CPU is occupied for a long period to
serve interrupts of incoming packets, allowing outgoing pack-
ets to accumulate at the device output queue, to be transmit-
ted in a large burst when the CPU becomes available. Extreme
burstiness creates long queues and increases the likelihood of
massive losses.

Pacing is a common way to solve the burstiness problem at
the sender. A straightforward implementation of pacing
would have the TCP sender schedule successive packet trans-
missions at a constant time interval, obtained by dividing the

IEEE Network ¢ January/February 2005

Throughput | Utilization | Delay ms | Distance km
Mb/s

1 925 (266) 95% (27%) | 180 10,037 3600 9.28 (2.67) | 387 (111)

2 1797 (931) 92% (48%) | 180 10,037 3600 18.03 (9.35) | 753 (390)

7 6123 90% 85 3948 21,600 24.17 15,396

9 7940 90% 85 3948 4030 31.35 3725

10 8609 88% 85 3948 21,600 33.99 21,647

M Table 1. SC2002 FAST experimental results: average statistics. Statistics in parentheses are for current

TCP implementation in Linux v2.4.18 with optimization obtained on January 27-28, 2003.

congestion window by the current RTT. In practice, this
would require a timer with a very high resolution. For exam-
ple, a host with a 1 Gb/s throughput and 1500-byte maximum
transmission unit (MTU) sends 83,333 packets/s and requires
a scheduling interval of 12 us. Considering that the typical
kernel task scheduler runs every 10 ms, the overhead of
scheduling packet transmissions at 12 us apart will signifi-
cantly degrade overall operating system (OS) performance.
We can reduce the overhead by scheduling small bursts of
packets instead of individual packets. However, at a large
congestion window, pacing alone cannot solve the burstiness
problem.

We employ two burstiness control mechanisms, one to sup-
plement self-clocking in streaming out individual packets and
the other to increase window size smoothly in smaller bursts.
Burstiness reduction decides how many packets to send when
an ack advances congestion window by a large amount, and
attempts to limit the burst size on a smaller timescale than
one RTT. Window pacing increases the congestion window
over the idle time of a connection to the target determined by
the window control component. It reduces burstiness with a
reasonable amount of scheduling overhead.

Experimental Results

We have tested FAST TCP over continental, trans-Atlantic,
and trans-Pacific distances of more than 10,000 km, employing
a variety of commercial products. Its first public demonstra-
tion was a series of experiments conducted during the Super-
Computing Conference (SC 2002) in Baltimore, Maryland,
November 16-22, 2002, by a Caltech-SLAC research team
working in partnership with CERN, DataTAG, StarLight,
TeraGrid, Cisco, and Level(3). In this section, we present
some of our experiments during and after SC 2002.

Infrastructure

The demonstrations used an OC-192 (10 Gb/s) link between
Starlight (Chicago, Illinois) and Sunnyvale, the DataTAG 2.5
Gb/s link between Starlight and CERN (Geneva, Switzer-
land), an OC-192 link connecting the SC 2002 show floor in
Baltimore and the TeraGrid router at StarLight in Chicago,
and the Abilene backbone of Internet2. The network routers
and switches at Starlight and CERN were used together with
a Cisco GSR 12406 router at Sunnyvale, and sets of dual Pen-
tium 4 servers each with dual gigabit Ethernet connections at

92%

2G T T T T

"[—Aggregate

1800 ﬂ b

48%

1600 - d

1400 1

1400 T T T

1200

1000

800

16%

[— Aggregate]

1200 b

1000 b

Throughput <Mbps>

Linux TCP (default)

500 E:OW; T T T T T

—Flow L - L -
400 — Aggregate A 400 400
300]
200 w200} 4 200}]
) txq=100] txq = 10,000

0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
0 500 1000 1500 200 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500 4000

Linux TCP (optimized)

FAST

M Figure 2. Aggregate throughput traces of two flows. From left: Linux (txqueuelen = 100), Linux (txqueuelen = 10,000), FAST
(txqueuelen = 100); x-axis is time, y-axis is aggregate throughput, and percentage is utilization.

IEEE Network ¢ January/February 2005

L0000 T T T |[—Aggregate|
9000 9
8000 9
e T —Aggregate] /°°°[]
6000 =4 N 6000L 9
Q
)
=
v
5000 1% 5000 - 1
o
A)
Iy 3
e} . - .
< 4000 £ 4000
vV =
5
23000 1 3000 E
[=)]
>
g
=
2000 - 2000 _
1000 =IRLCRC 1000 4
i |
%08 1 hr] 0 . L bhr . 0 1 1 Bl | |
1 1 1 1 1 1 1
0 5000 10000 15000 20000 25000
o 10 10 10 10 10 10 10 0 5000 10000 1500 20000 25000
1 flow iovs 10 flows

M Figure 3. Aggregate throughput traces for FAST experiments in Table 1. From left: 1 flow, 7 flows, 10 flows; x-axis is time, y-axis is

aggregate throughput, and percentage is utilization.

Starlight, Sunnyvale, CERN, and the SC 2002 show floor pro-
vided by Caltech, SLAC, and CERN. The network setup is
shown in Fig. 1.

We have conducted a number of experiments, all using the
standard MTU of 1500 bytes including TCP and IP headers.
In all the experiments reported below, the bottleneck was
either the gigabit Ethernet card or the transatlantic OC-48
link.

Throughput and Utilization

In this subsection we report our SC 2002 experiments on
throughput and utilization. To put these results in perspective,
we first present a set of calibration experiments conducted
January 27-28, 2003 after the SC 2002 conference using the
same testbed shown in Fig. 1.

Using a default device queue size (txgqueuelen = 100
packets) at the network interface card, the default Linux
TCP (v. 2.4.18), without any tuning on the AIMD parame-
ters, routinely achieves an average throughput of 185 Mb/s,
averaged over an hour, with a single TCP flow between Sun-
nyvale in California and CERN in Geneva, via StarLight in
Chicago, a distance of 10,037 km with a minimum delay of
180 ms round-trip. This is out of a possible maximum of 973
Mb/s to the application, excluding TCP/IP overhead, limited
by the gigabit Ethernet card, and represents a utilization of
just 19 percent. If the device queue size is increased 100
times (txqueuelen = 10,000 packets), the average through-
put increases to 266 Mb/s and utilization increases to 27 per-
cent. With two TCP flows sharing the path, one flow between
each pair of servers, the aggregate throughputs are 317 Mb/s
with txqueuelen = 100 packets and 931 Mb/s with
txqueuelen = 10,000 packets, out of a possible maximum
of 1947 Mb/s.

Under the same experimental conditions, using the default
device queue size (txqueuelen = 100 packets), a single flow
FAST TCP achieved an average throughput of 925 Mb/s and

utilization of 95 percent during SC 2002, averaged over an
hour. The aggregate throughput with two flows was 1797 Mb/s
with txqueuelen = 100 packets.

The comparison is summarized in the first three rows of
Table 1, where results from Linux TCP, using large txgueue -
len, are shown in parentheses. The throughput in each
experiment is the ratio of total amount of data transferred
and the duration of the transfer. Utilization is the ratio of
throughput and bottleneck capacity (gigabit Ethernet card),
excluding the (40-byte) overhead of TCP/IP headers. The
bm/s column is the product of throughput and distance of
transfer, measured in bit meters per second. It is the combi-
nation of high capacity and large distance that causes perfor-
mance problems, and this is measured by bm/s. Delay is the
minimum RTT. The throughput traces for some of these
experiments are shown in Fig. 2.

Also shown in Table 1 are aggregate statistics for 7-, 9-, and
10-flow experiments using FAST with txqueuelen = 100
packets. Their throughput traces are shown in Fig. 3. In par-
ticular, with 10 flows FAST TCP achieved an aggregate
throughput of 8609 Mb/s and utilization of 88 percent, aver-
aged over a 6-h period, over a routed path between Sunny-
vale, California, and Baltimore, Maryland, using the standard
MTU, apparently the largest aggregate throughput accom-
plished in such a configuration by then as far as we know.
These traces, especially those for 9 and 10 flows, display sta-
ble reduction in throughput over several intervals of several
minutes each, suggesting significant sharing with other confer-
ence participants of network bandwidth. We were unable to
calibrate our results using current Linux TCP implementation
for 7-, 9-, and 10-flow experiments because the path between
StarLight in Chicago and the conference show floor in Balti-
more was not available after SC 2002. The path between Sun-
nyvale and CERN remained available to us until the end of
February 2003, and allowed us to calibrate the 1- and 2-flow
experiments after the conference.

IEEE Network ¢ January/February 2005

Conclusions

We have described the development of FAST TCP, from
background theory to actual implementation and its first
demonstration. Unlike TCP Reno and its variants, FAST TCP
is delay-based. This allows it to achieve high utilization with-
out having to fill the buffer and incur large queuing delay, as
loss-based algorithms often do. It achieves proportional fair-
ness and does not penalize flows with large RTTs.

The experiments described in this article were carried out
in relatively simple scenarios. Even though some of the exper-
iments involved multiple flows with heterogeneous delays in
the presence of background traffic, the intensity of the back-
ground traffic was generally low and our own TCP flows were
long-lived. Whether FAST TCP can converge rapidly, yet sta-
bly, to a fair allocation in a dynamic environment where flows
of heavy-tailed sizes join and depart in a random fashion, and
in the presence of current TCP flows needs a lot more evalua-
tion. Some of these experiments are reported in [1, 7].

Acknowledgments

A global experiment such as the one reported here requires

the contribution of a large number of people. We gratefully

acknowledge the support of:

e The Caltech team, in particular, C. Chapman, C. Hu
(Williams/Caltech), J. Pool, J. Wang, and Z. Wang (UCLA)

* The CERN team, in particular, P. Moroni

e The Cisco team, in particular, B. Aiken, V. Doraiswami, M.
Potter, R. Sepulveda, M. Turzanski, D. Walsten and S. Yip;
Cisco also loaned the GSR 12406 router at Sunnyvale, and
additional modules at Starlight, CERN and Sunnyvale

* The DataTAG team, in particular, E. Martelli and J. P.
Martin-Flatin

e The LANL team, in particular, G. Hurwitz, E. Weigle, and
A. Engelhart

* The Level(3) team, in particular, P. Fernes and R. Struble;
Level(3) also donated the OC192 link between StarLight in
Chicago and the Level(3) PoP in Sunnyvale

* The SCinet team, in particular, G. Goddard and J. Patton

* The SLAC team, in particular, C. Granieri C. Logg, 1. Mei,
W. Matthews, R. Mount, J. Navratil, and J. Williams

* The StarLight team, in particular, T. deFanti and L. Win-
kler

e The TeraGrid team, in particular, L. Winkler

and the funding support of the European Commission (Grant

IST-2001-32459), U.S. Army Research Office (Grant

DAAD19-02-1-0283), U.S. Department of Energy (Grants

DE-AC03-76SF00515, DE-FG03-92-ER40701, and W-7405-

ENG-36), and U.S. National Science Foundation (Grants

ANI-0113425 and ANI-0230967).

References

[11C. Jin, D. X. Wei, and S. H. Low, “TCP FAST: Motivation, Architecture, Algorithms,
Performance,” Proc. IEEE INFOCOM, Mar. 2004, http:// neﬂob.cahech.ec?u

[2] C. Casetti et al., “TCP Westwood: End-to-end Congesfion Control for Wired/Wire-
less Networks,” Wireless Networks J., vol. 8, 2002, pp. 467-79.

[3] S. Floyd, “High-Speed TCP for Large Congestion Windows,” Internet draft
draft-Hoyd-tcp-highspeed-02.1xt, http://www.icir.org/floyd/hstcp.html, Feb.
2003, work in progress.

[4] T. Kelly, “Scalable TCP: Improving Performance in High Speed Wide Area
Networks,” http://www-lce.eng.cam.ac.uk/~ctk21/scalable/, Dec. 2002.

[5] S. Ravot, “GridDT,” The Tst Int'l. Wksp. Protocols for Fast Long-Distance Net-
works, http://sravot.home.cern.ch/sravot/GridDT/GridDT.htm, Feb. 2003.

[6] L. Xu, K. Harfoush, and I. Rhee, “Binary Increase Congestion Control for Fast
Long Distance Networks,” Proc. IEEE INFOCOM, Mar. 2004.

[71S. Hegde et al., “FAST TCP in High Speed Networks: An Experimental
Study,” Proc. GridNets, Oct. 2004.

[8] S. H. Low, “A Duality Model of TCP and Queue Management Algorithms,”
IEEE/ACM Trans. Net., vol. 11, no. 4, Aug. 2003, http://netlab.caltech.edu,
pp. 525-36.

[9]1 F. P. Kelly, “Fairness and Stability of End-to-end Congestion Control,” Euro-
pean Journal of Control, vol. 9, 2003, pp. 159-76.

[10] S. H. Low and R. Srikant, “A Mathematical Framework for Designing
Low-loss, Low-delay Internet,” Networks and Spatial Economics, Special Issue
on Crossovers between Transportation Planning and Telecommunications, E.
Altman and L. Wynter, Eds., vol. 4, Mar. 2004, pp. 75-101.

[11] G. Vinnicombe, “On the Stability of Networks Operating TCP-Like Conges-
tion Control,” Proc. IFAC World Cong., 2002.

[12] F. Paganini et al., “Congestion Control for High Performance, Stability and
Fairness in General Networks,” IEEE/ACM Trans. Net., 2004.

[13] S. Kunniyur and R. Srikant, “Designing AVQ Parameters for a General
Topology Network,” Proc. Asian Control Conf., Sept. 2002.

[14] H. Choe and S. H. Low. Stabilized Vegas,” Proc. IEEE INFOCOM, Apr.
2003, http://netlab.caltech.edu

[15] J. Wang, A. Tang, and S. H. Low, “Local stability of FAST TCP,” Proc. IEEE
Conf. Decision and Control, Dec. 2004.

[16] J. Wang, D. X. Wei, and S. H. Low, “Modeling and Stability of FAST TCP,”
Proc. IEEE INFOCOM, Mar. 2005.

Biographies

CHENG JIN [M'02] received his B.S. in electrical engineering from Case Western
Reserve Universiz, and his Ph.D. in computer science and engineering from the
University of Michigan. He is currently a senior post-doctoral fellow at California
Institute of Technology (Caltech). His research includes scalable network protocols
and services, network security, and structured software deve|opment.

DAVID WEI received his B.E. degree from Tsinghua University, China, and his
M.S. degree from the Computer Science Department at Caltech. He is currently a
Ph.D. student in the same department. His research interests include TCP conges-
tion control and overlay networks.

STEVEN. H. Low [M’92, SM’99] received his B.S. from Cornell University, and
M.S. and Ph.D. from the University of California (UC) at Berkeley, all in electrical
engineering. He is now an associate professor at Caltech, where he leads the
FAST Project, and a Senior Fellow of the University of Melbourne. He was a co-
recipient of the IEEE Bennett Prize Paper Award in 1997 and the 1996 R&D 100
Award. He is on the editorial boards of IEEE/ACM Transactions on Networking,
Computer Networks Journal, ACM Computing Surveys, and Foundations and
Trends in Networking, and is a Senior Editor of IEEE Journal on Selected Areas
in Communications.

JULIAN BUNN is a member of the professional staff at the Center for Advanced
Computing Research at Caltech. He gained his B.Sc. (Hons.) in physics from the
University of Manchester in 1980, and his Ph.D. in experimenthparficle physics
from the University of Sheffield in 1983. His research interests include high-per-
formance networks, computing systems, and Grid architectures that will solve the
data distribution and analysis challenges posed by the Large Hadron Collider
experiments at CERN.

GARY BUHRMASTER is a researcher at SLAC computing services.

HYOJEONG (DAWN) CHOE received her B.E. in electrical and electronic engineer-
ing from POSTECH, Korea, in 1999. She is currently a Ph.D. ccndic?ufe at
POSTECH. Her research inferest in control theories has expanded to flow control
in general communication networks and automated transportation networks. She
was with the Networking Laboratory at Caltech from 2001 to 2004, where she
worked on the FAST Project.

LEs COTTRELL received his Ph.D. in nuclear physics from Manchester University. He
is currently a research physicist at SLAC and assistant director of SLAC comput-
ing services, focusing on real-time data acquisition and analysis. He was part of
Nobel prize winning group that discovered the quark. He led the effort that pro-
vided the first Infernet connection to mainland China. He is a Pl of the DoE spon-
sored Internet End-to-End Performance Monitoring (IEPM) effort. He is a co-PI of
teams that captured the Internet2 Land Speed Record twice.

JOHN C. DOVYLE received B.S. and M.S. degrees in electrical engineering from
Massachusetts Institute of Technology (MIT) in 1977, and a Ph.D. degree in
mathematics from UC-Berkeley in 1984. He has served as a consultant to Honeywell
Technology Center since 1976, and is the John G Braun Professor of Control
and Dynamical Systems, Electrical Engineering, and Bioengineering at Caltech.

WU-CHUN FENG [SM] is a technical staff member and team leader of Research
and Development in Advanced Network Technology (RADIANT) at Los Alamos
National Laboratory as well as a fellow of the Los Alamos Computer Science
Institute and chief scientist at Orion Multisystems. His research interests are in the
broad area of high-performance networking and computing. He has a B.S. and
an M.S. in computer engineering from Penn State University. He has a Ph.D. in
computer science from the University of lllinois at Urbana-Champaign.

OLIVIER MARTIN is project leader of the DataTAG project. He received an M.Sc.
degree in electrical engineering from Ecole Superieure d’Electricite (Supelec),
Paris, France in 1962. He joined CERN in 1971, held various positions in the
Software Group of the Data Handling Division, and then moved to the Commu-

10

IEEE Network ¢ January/February 2005

nications Group of the Computing and Networks Division in 1984, where he has
been head of the External Networking Section since 1989. His research interests
include high-speed networking, transport protocols, and grids.

HARVEY NEWMAN [Sc. D, MIT 1974] is a professor of physics at Caltech, and a
Caltech faculty member since 1982. He co-led the MARK J Collaboration that
discovered the gluon, the carrier of the strong force, at the DESY laboratory in
Hamburg in 1979. He has had a leading ro?e in the development, operation,
and management of international networks and collaborative systems serving the
HENP communities since 1982, and served on the Technical Advisory Group for
NSFNet in 1986. He originated the Data Grid Hierarchy concept adopted by the
four LHC high energy physics collaborations.

FERNANDO PAGANINI received his electrical engineering and mathematics degrees
from the Universidad de la Republica, Montevideo, Uruguay, in 1990, and his
M.S. and Ph.D. degrees in electrical eengineering from Caltech in 1992 and
1996, respectively. From 1996 to 1997 he was a postdoctoral associate at MIT.
Since 1997 he has been with the Electrical Engineering Department at the Uni-
versity of California at Los Angeles (UCLA), where he is currently an associate
profkessor‘ His research interests are robust control, distributed control, and net-
works.

SYLVAIN RAVOT is a senior network engineer at Caltec, Division of Physics, Math-
ematics and Astronomy. He is currently based at CERN,Geneva, Switzerland,
where he is charge of the operation of the CERN/U,S, transatlantic network. His
research inferests include data intensive distributed computing and high-speed
networking issues. He holds a degree in communication systems from the Swiss
Federal Institute of Technology, Lausanne.

SURESH MAN SINGH received his M.S. in information technology from the Univer-
sity of Canberra and B.E. in electronics engineering Punjab University. He is cur-
rently a computing analyst at the Department of High Energy Physics at Caltech.
He is a system manager of the Caltech tier2 center and grid site manager. He is

involved in the iVDGL, GriPhyN, Grid3, and PPDG projects.

IEEE Network ¢ January/February 2005

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

